Funciones trigonométricas inversas
arctan(x)+arccot(x)=left{begin{matrix} pi/2, & mbox{si }x > 0 \  -pi/2, & mbox{si }x < 0 end{matrix}right..
arctan(x)+arccot(x)=left{begin{matrix} pi/2, & mbox{si }x > 0 \ -pi/2, & mbox{si }x < 0 end{matrix}right..
arctan(x)+arctan(y)=arctanleft(frac{x+y}{1-xy}right)
arctan(x)+arctan(y)=arctanleft(frac{x+y}{1-xy}right)
Composición de funciones trigonométricas


operatorname{sin}^2(arccos(x))=1-x^2
operatorname{sin}^2(arccos(x))=1-x^2
operatorname{sin}^2(arctan(x))=frac{x^2}{1+x^2}
operatorname{sin}^2(arctan(x))=frac{x^2}{1+x^2}
tan[arcsin (x:<math>tan[arccos (x)]=frac{sqrt{1 - x^2}}{x}
tan[arcsin (x:<math>tan[arccos (x)]=frac{sqrt{1 - x^2}}{x}

cos[arctan(x)]=frac{1}{sqrt{1+x^2}}
cos[arctan(x)]=frac{1}{sqrt{1+x^2}}
cos[arcsin(x)]=sqrt{1-x^2} ,
cos[arcsin(x)]=sqrt{1-x^2} ,
cos^2(arctan(x))=frac{1}{1+x^2}
cos^2(arctan(x))=frac{1}{1+x^2}